Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1964013

ABSTRACT

Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.


Subject(s)
Iron Overload , Animals , Benzoates/therapeutic use , Deferasirox/therapeutic use , Deferiprone , Deferoxamine/therapeutic use , Inflammation/complications , Inflammation/drug therapy , Iron/therapeutic use , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , Mammals , Pyridones/therapeutic use
2.
Molecules ; 27(13)2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1934172

ABSTRACT

Iron plays a critical role in the immune response to inflammation and infection due to its role in the catalysis of reactive oxygen species (ROS) through the Haber-Weiss and Fenton reactions. However, ROS overproduction can be harmful and damage healthy cells. Therefore, iron chelation represents an innovative pharmacological approach to limit excess ROS formation and the related pro-inflammatory mediator cascades. The present study was designed to investigate the impact of the iron chelator, DIBI, in an experimental model of LPS-induced acute lung injury (ALI). DIBI was administered intraperitoneally in the early and later stages of lung inflammation as determined by histopathological evaluation. We found that lung tissues showed significant injury, as well as increased NF-κB p65 activation and significantly elevated levels of various inflammatory mediators (LIX, CXCL2, CCL5, CXCL10, IL-1𝛽, IL-6) 4 h post ALI induction by LPS. Mice treated with DIBI (80 mg/kg) in the early stages (0 to 2 h) after LPS administration demonstrated a significant reduction of the histopathological damage score, reduced levels of NF-κB p65 activation, and reduced levels of inflammatory mediators. Intravital microscopy of the pulmonary microcirculation also showed a reduced number of adhering leukocytes and improved capillary perfusion with DIBI administration. Our findings support the conclusion that the iron chelator, DIBI, has beneficial anti-inflammatory effects in experimental ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation Mediators , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Lipopolysaccharides/pharmacology , Lung , Mice , NF-kappa B , Pyridines , Reactive Oxygen Species
5.
Biol Trace Elem Res ; 200(11): 4571-4581, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1536355

ABSTRACT

Iron is a trace element that is used to replicate the virus and has a role in the vital functions of the body and the host's innate immune system. The mechanism of iron in COVID-19 severity is still not well understood. The aim of this study was to evaluate the association of the iron with COVID-19 severity. A case-control study was performed on 147 patients with a positive PCR test result and 39 normal individuals admitted to the Persian Gulf Martyrs Hospital in Bushehr, Iran. The iron profiles and related tests were measured along with hematological analytes. Hemoglobin (Hb), Fe, and saturated transferrin decreased in all the groups compared to the controls, but ferritin increased in the patient groups. After adjusting for age and sex, we found that increased ferritin levels augmented the odds ratio (OR) of the disease in the moderate (OR = 2.95, P = 0.007), severe (OR = 6.1, P < 0.001), and critical groups (OR = 8.34, P < 0.001). The decreased levels of Fe reduced the OR of the disease in the mild (OR = 0.96, P < 0.001), moderate (OR = 0.96, P < 0.001), severe (OR = 0.95, P < 0.001), and critical (OR = 0.98, P = 0.001) groups. Fe (AUC = 85.95, cutoff < 75.5 µg/dL, P < 0.001) and ferritin (AUC = 84.45, cutoff > 157.5 ng/dL, P < 0.001) have higher AUC for disease prognosis, but only ferritin (AUC = 74.89, cutoff > 261.5 ng/dL, P < 0.001) has higher AUC for disease severity assays. It could be concluded that the use of iron chelators to reduce iron intake can be considered a therapeutic goal. In addition, measuring Fe and ferritin is beneficial for the diagnosis of the disease and determining its severity.


Subject(s)
COVID-19 , Trace Elements , Case-Control Studies , Ferritins , Hemoglobins/metabolism , Humans , Iron/metabolism , Iron Chelating Agents/therapeutic use , Transferrin
9.
Medicine (Baltimore) ; 100(18): e25832, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1216697

ABSTRACT

ABSTRACT: Tocilizumab (TCZ), a monoclonal recombinant antibody against IL-6 receptor, is currently used in managing the cytokine release syndrome (CRS) that occurred in coronavirus disease 2019 (COVID-19) selected cases. The primary objective of our study was to establish the effectiveness of TCZ in patients with severe or critical severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pneumonia.We retrospectively analyzed 25 consecutive patients, admitted in the Academic Emergency Hospital Sibiu, Romania from April 1, 2020 until May 25, 2020, all with confirmed SARS-CoV-2 infection and severe pneumonia. All patients were treated off-label with TCZ, beside their standard care. Adjuvant iron chelator was associated in 11 patients.Six female and 19 male patients admitted in our hospital all with confirmed SARS-CoV-2 infection and severe pneumonia as defined by Chinese Centers for Disease Control and Prevention were enrolled in this study. Seventeen of the 25 enrolled patients (68%) were seriously ill requiring noninvasive ventilation or oxygen mask, and 8 cases (32%) were critically ill requiring invasive mechanical ventilation. All patients received TCZ, and also received hydroxychloroquine, and lopinavir/ritonavir 200/50 mg for 10 days. Adjuvant iron chelator (deferasirox - marketed as Exjade) was associated in 11 patients who had ferritin serum levels above 1000 ng/mL. No side effects were encountered during infusions or after TCZ. We observed a rapid increase in arterial oxygen saturation for 20 of the 25 cases (80%) with a favorable evolution toward healing. Survivors were younger than 60 years old (80%), had less comorbidities (10% no comorbidities, 70% with 1 or 2 comorbidities), lower serum ferritin levels (30% under 1000 ng/mL), and 50% had no serum glucose elevation. Our patients with CRS had no response to corticosteroid therapy. Five out of the 25 patients had an unfavorable evolution to death. The off-label use of TCZ in patients with severe or critically ill form of SARS-CoV-2 infection had good results in our study.Off-label use of TCZ in severe and critical cases of COVID-19 pneumonia is effective in managing the "cytokine storm." Better outcomes were noted in younger patients. Associated adjuvant iron chelators may contribute to a good outcome and needs to be confirmed in larger studies.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Deferasirox/therapeutic use , Iron Chelating Agents/therapeutic use , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , Comorbidity , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Off-Label Use , Pneumonia, Viral/virology , Respiration, Artificial , Retrospective Studies , Romania , SARS-CoV-2
10.
Expert Rev Hematol ; 14(2): 155-173, 2021 02.
Article in English | MEDLINE | ID: covidwho-1044433

ABSTRACT

INTRODUCTION: COVID-19 has similarities to the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, as severe patients and non-survivors have frequently shown abnormal coagulation profiles. Immune-mediated pathology is a key player in this disease; hence, the role of the complement system needs assessment. The complement system and the coagulation cascade share an intricate network, where multiple mediators maintain a balance between both pathways. Coagulopathy in COVID-19, showing mixed features of complement-mediated and consumption coagulopathy, creates a dilemma in diagnosis and management. AREAS COVERED: Pathophysiology of coagulopathy in COVID-19 patients, with a particular focus on D-dimer and its role in predicting the severity of COVID-19 has been discussed. A comprehensive search of the medical literature on PubMed was done till May 30th, 2020 with the keywords 'COVID-19', 'SARS-CoV-2', 'Coronavirus', 'Coagulopathy', and 'D-dimer'. Twenty-two studies were taken for weighted pooled analysis of D-dimer. EXPERT OPINION: A tailored anticoagulant regimen, including intensification of standard prophylactic regimens with low-molecular-weight heparin is advisable for COVID-19 patients. Atypical manifestations and varying D-dimer levels seen in different populations bring forth the futility of uniform recommendations for anticoagulant therapy. Further, direct thrombin inhibitors and platelet inhibitors in a patient-specific manner should also be considered.


Subject(s)
Blood Coagulation Disorders/etiology , COVID-19/complications , Complement Activation , SARS-CoV-2 , Animals , Anticoagulants/therapeutic use , Biomarkers , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/physiopathology , Blood Coagulation Tests , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , China/epidemiology , Comorbidity , Coronavirus Infections/blood , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/epidemiology , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/physiopathology , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Forecasting , Humans , Immunization, Passive , Inflammation/etiology , Inflammation/physiopathology , Iron Chelating Agents/therapeutic use , Ischemia/blood , Ischemia/etiology , Ischemia/physiopathology , Mice , Prevalence , Severe Acute Respiratory Syndrome/blood , Severity of Illness Index , Thrombophilia/drug therapy , Thrombophilia/etiology , Thrombophilia/physiopathology , Venous Thromboembolism/blood , Venous Thromboembolism/etiology , Venous Thromboembolism/physiopathology , COVID-19 Serotherapy
11.
Biomed Pharmacother ; 136: 111228, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1033016

ABSTRACT

Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.


Subject(s)
COVID-19/metabolism , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron/metabolism , Lactoferrin/therapeutic use , SARS-CoV-2 , Humans , Iron/blood , Iron/chemistry , Lactoferrin/pharmacology
12.
Front Cell Infect Microbiol ; 10: 569709, 2020.
Article in English | MEDLINE | ID: covidwho-1004672

ABSTRACT

Accumulating evidence suggests that there are important contributions to coronavirus disease (COVID-19) from redox imbalance and improperly coordinated iron, which cause cellular oxidative damage and stress. Cells have developed elaborate redox-dependent processes to handle and store iron, and their disfunction leads to several serious diseases. Cellular reductants are important as reactive oxygen species (ROS) scavengers and to power enzymatic repair mechanisms, but they also may help generate toxic ROS. These complicated interrelationships are presented in terms of a cellular redox/iron/ROS triad, including ROS generation both at improperly coordinated iron and enzymatically, ROS interconvertibility, cellular signaling and damage, and reductant and iron chelator concentration-dependent effects. This perspective provides the rational necessary to strongly suggest that COVID-19 disrupts this interdependent triad, producing a substantial contribution to the ROS load, which causes direct ROS-induced protein and phospholipid damage, taxes cellular resources and repair mechanisms, and alters cellular signaling, especially in the more critical acute respiratory distress syndrome (ARDS) phase of the infection. Specific suggestions for therapeutic interventions using reductants and chelators that may help treat COVID-19 are discussed.


Subject(s)
COVID-19/metabolism , Iron/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , SARS-CoV-2/metabolism , Antioxidants/metabolism , Antioxidants/therapeutic use , COVID-19/complications , Glutathione/metabolism , Hemoglobins/metabolism , Humans , Hydroxyl Radical/metabolism , Inflammation , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Models, Biological , Oxidation-Reduction , Reducing Agents/pharmacology , Reducing Agents/therapeutic use , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , COVID-19 Drug Treatment
13.
Artif Organs ; 45(2): 163-167, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-742055

ABSTRACT

Studies from China on COVID-19 revealed that nonsurvivors had cytokine storm with high IL-6 and hyperferritinemia. Iron liberated from necrotic cells may catalyze free radical production and amplify lipid peroxidation causing membrane dysfunction and multiorgan failure. Consequently, iron chelators have been successfully utilized in various experimental and clinical models of cytokine storm and multiorgan damage, such as in ischemia-reperfusion injury, sepsis, and infections. Since viral replication may be influenced by iron accumulation, iron chelation has been proven beneficial in a variety of viral infections, such as HIV-1, hepatitis B virus, Mengovirus, Marburg hemorrhagic fever, Enterovirus 71, and West Nile virus. In this commentary, we elaborate on the idea of considering iron chelation as a therapeutic modality in patients with severe COVID-19 infection. For critically ill patients in the ICU, intravenous deferoxamine would provide sufficient and rapid iron chelation to ameliorate cytokine storm, whereas in less severe cases an oral chelator could prevent the development of excessive inflammatory response.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Hyperferritinemia/drug therapy , Hyperferritinemia/virology , Iron Chelating Agents/therapeutic use , Administration, Oral , Deferoxamine/therapeutic use , Humans , Infusions, Intravenous , COVID-19 Drug Treatment
14.
Immunol Res ; 68(4): 213-224, 2020 08.
Article in English | MEDLINE | ID: covidwho-651271

ABSTRACT

SARS-CoV-2 infection is characterized by a protean clinical picture that can range from asymptomatic patients to life-threatening conditions. Severe COVID-19 patients often display a severe pulmonary involvement and develop neutrophilia, lymphopenia, and strikingly elevated levels of IL-6. There is an over-exuberant cytokine release with hyperferritinemia leading to the idea that COVID-19 is part of the hyperferritinemic syndrome spectrum. Indeed, very high levels of ferritin can occur in other diseases including hemophagocytic lymphohistiocytosis, macrophage activation syndrome, adult-onset Still's disease, catastrophic antiphospholipid syndrome and septic shock. Numerous studies have demonstrated the immunomodulatory effects of ferritin and its association with mortality and sustained inflammatory process. High levels of free iron are harmful in tissues, especially through the redox damage that can lead to fibrosis. Iron chelation represents a pillar in the treatment of iron overload. In addition, it was proven to have an anti-viral and anti-fibrotic activity. Herein, we analyse the pathogenic role of ferritin and iron during SARS-CoV-2 infection and propose iron depletion therapy as a novel therapeutic approach in the COVID-19 pandemic.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections , Ferritins/blood , Iron Chelating Agents/therapeutic use , Iron Overload , Iron/blood , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Iron Overload/blood , Iron Overload/drug therapy , Iron Overload/epidemiology , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL